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Abstract

We propose a multiplicity-robust estimation method for (static or dynamic) games.
The method allows for distinct behaviors and strategies across markets by treating mar-
ket specific behaviors as correlated latent variables, with their conditional probabil-
ity measure treated as an infinite-dimensional nuisance parameter. Instead of solving
the intermediate problem which requires optimization over the infinite dimensional set,
we consider the equivalent dual problem which entails optimization over only a finite-
dimensional Euclidean space. This property allows for a practically feasible character-
ization of the identified region for the structural parameters. We apply the estimation
method to newspaper market previously studied in Gentzkow et al. (2014) to characterize
the identified region of marginal costs.

1 Introduction

This paper explores inference under equilibrium multiplicity. A multiplicity-robust estimation

method is proposed and illustrated for a class of economic models that can be written as a

fixed point problem. The class includes static games and dynamic Markov games. Actions

can be discrete or continuous. Unlike the traditional two-step methods, researchers are not

required to assume a single equilibrium is played in the cross-section. Equilibrium multiplicity

and unobserved market heterogeneity are accommodated. Our method allows a researcher to

identify and estimate the structural parameters of interest even if data of long-time series are

not available.

To the best of our knowledge, the methods developed are the first to provide partial iden-

tification results for dynamic Markov games under equilibrium multiplicity. In the literature,

partial identification of games with multiple equilibria has been limited to static contexts, e.g.
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Ciliberto and Tamer (2009) and Molinari (2010). Our method provides a practically attractive

computational procedure to estimate the identified region which applies to dynamic games

and also static games.

A number of papers proposed two-step estimation methods for games under varying as-

sumptions including Guerre et al. (2000) and Hortacsu and Kastl (2012) for static games and

Jofre-Bonet and Pesendorfer (2003), Aguirregabiria and Mira (2007), Bajari et al. (2007), Pe-

sendorfer and Schmidt-Dengler (2008), and Arcidiacono and Miller (2011) for dynamic games.

These methods led to numerous empirical papers that analyze interactions among multiple

players. Two-step methods assume that the first-stage estimators of players’ policies are con-

sistent. In typical microeconomic applications where a long time-series data set may not be

available, researchers often pool data from different markets to construct first-stage estimates.

However, unless the data are generated from a single (or identical) equilibrium in every market

(or auction), the first-stage estimate of players’ policies is not consistent for true policies, and

hence the second-stage estimate of structural parameters generally fails to be consistent. The

assumption of single equilibrium is indeed restrictive as multiplicity of equilibria is an innate

feature of games, but many research papers effectively make this restrictive assumption for

empirical analysis. Otsu et al. (2016) proposed several tests to examine the null hypothesis

of a single equilibrium. They find that the assumption of a single equilibrium is not satisfied

in the empirical application of Ryan (2012).

Our proposed estimator for identified regions allows for distinct behaviors and strategies

across markets. We treat market specific behaviors as correlated latent variables, with their

conditional probability measure treated as an infinite-dimensional nuisance parameter. Based

on Schennach (2014), instead of solving the intermediate problem which requires optimization

over the infinite-dimensional set, we consider the equivalent dual problem which entails opti-

mization over only a finite-dimensional Euclidean space. This property allows for a practically

feasible characterization of the identified region for the structural parameters.

Our application studies dynamic competition in the US newspaper market, which has been

rigorously studied in Gentzkow et al. (2014). Equilibrium multiplicity is likely to arise due

to a number of features inherent to this market. Most notably, the market is two-sided with

revenues coming potentially from two sides: readers and advertisers. Newspapers strategically

price their product in these two dimensions. We conduct statistical tests for equilibrium

multiplicity and find that multiplicity is indeed a concern.

We formulate a dynamic Markovian game which shares key features of the static model of

Gentzkow et al. (2014) but additionally allows for (i) entry and exit and (ii) dynamic forward

looking behavior by newspapers. We restrict attention to a parametric class of strategies,

which simplifies the computational burden substantially, and use the estimation method to

estimate the identified region of structural parameters.

This paper is organized as follows. Section 2 introduces notations and definitions for

the games considered. Section 3 illustrates the multiplicity concerns in examples. Section

4 provides the econometric results. Section 5 formulates a dynamic game in the newspaper

industry and describes our estimation approach. Section 6 discusses our estimates, and Section

7 concludes.
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2 Framework

This section describes our framework. We consider economic situations that can be charac-

terized by a fixed point problem in an unobservable variable p:

p ∈ Ψ(p; θ), (1)

where Ψ is a mapping from a bounded set P ⊆ Rl to Rl and parameterized by a vector of

parameters θ ∈ Rq.

The fixed point restriction (1) arises naturally in a number of economic settings. A leading

example is Nash equilibria of game theoretic models. In game theoretic models, P can be

interpreted as the strategy set and the mapping Ψ is the best response correspondence. For

example, the i-th component of the best response mapping Ψ in a static complete information

N -player game with payoff functions (Ui)
N
i=1 is defined as arg maxx Ui(x,p−i; θ) where p−i

denotes the strategies of players other than player i. A fixed point of this mapping Ψ is

a Nash equilibrium. Our application considers a dynamic pricing game in the newspaper

market in which the profit function is the discounted sum of future newspaper profits. The

data consist of newspaper subscription price, advertising price and the newspaper circulation

information.

The strategies p are usually not observed in the data. Instead, the econometrician observes

variables (Zj)
M
j=1 for a cross section of M markets. The observable Zj = (atj, s

t
j)
T
t=1 consist of a

sequence of action profiles atj ∈ A, state and market variables stj ∈ S for periods t = 1, . . . , T

generated by the equilibrium play of some underlying economic model. We assume that the

same model applies to distinct markets but allow for observed and unobserved heterogeneity

across markets which we shall illustrate below. The action profiles a can be viewed as the

’outcome’ of the unknown strategy profiles p. A key difficulty in the estimation arises as there

can be multiple equilibria that could rationalize observed actions. In terms of our equation

(1), this corresponds to multiple solutions to the fixed point problem. We do not constrain

the set of solutions to the fixed point problem. In particular, we allow that pj 6= pj′ for j 6= j′.

For a large-T setting the strategies pj can be estimated with the root-T convergence rate for

each market j, and these preliminary estimates can be plugged in to estimate θ in the second

step. This procedure parallels the large-T nonlinear panel methods, where individual fixed

effects are estimated with the root-T convergence rate and asymptotic biases are corrected by

analytic expansions (e.g., Hahn and Newey (2004)).

We focus on the asymptotic setting where T is fixed at a small number but M →∞. We

denote this setting as short panels of a large number of markets. Because T does not grow

in this asymptotic setting, the market-specific choice probabilities pj cannot be consistently

estimated by a frequency estimator p̂j in the first step, and hence the two-step methods are

not guaranteed to work. Furthermore, we relax point identification as such, and pursue set

identification of the structural parameters θ and propose to estimate the identified region by

the feasible computational method based on the approach proposed by Schennach (2014).

Let π denote the probability measure of the observable data Z. Let λ denote the conditional

probability measure of the latent variables p conditional on the observables Z. The joint

distribution λ× π is defined as the product of the conditional probability λ and the marginal

π. We assume that (pj, Zj)
M
j=1 is an iid sequence, although we do not specify or estimate the
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conditional distribution λ of the latent variable. This implies the observables (Zj)
M
j=1 are an

iid sample from a cross-section of M markets. Our sampling assumption follows Assumption 1

in Tamer (2003) and Ciliberto and Tamer (2009) and requires the existence of an equilibrium

selection function. We leave the equilibrium selection function unspecified and examine the

question of what can be learned when researchers remain agnostic about this selection function.

One could condition this function on the various equilibria as a function of observables in

which the statistical model becomes one of a mixture. Without assumptions on equilibrium

selection, the model is partially identified as is shown in Tamer (2003). Bjorn and Vuong

(1984) and Bajari et al. (2010) adopt a related approach in which the equilibrium selection

rule is parameterized and estimated.

Let N denote the set of N players, S denote the state space with the cardinality ms, and

Ai denote the action space of player i ∈ N with the cardinality K + 1. The equilibrium

condition (1) is a fixed point problem which can be equivalently formulated as a problem of

finding zeros of the following one-dimensional equation:∑
i∈N

∑
s∈S

∑
ai∈Ai

{p(ai,s) −Ψ(ai,s)(p; θ)}2 = 0, (2)

where p(ai,s) means the element of the vector p corresponding to action-state profile (ai, s), and

Ψ(ai,s) is the corresponding element of Ψ. We combine the aggregated equilibrium restrictions

with the restrictions placed on the strategies by the empirical data. Let d = ms ·N ·K + 1.

In particular, we consider the following d dimensional function

g(p, Z; θ) =

[ ∑
i∈N
∑

s∈S
∑

ai∈Ai
{p(ai,s) −Ψ(ai,s)(p; θ)}2[

f (s)p(ai,s) − f (ai,s)
]
i∈N,s∈S,ai∈Ai

]
, (3)

consisting of the equilibrium condition aggregated into one equation and the d−1 restrictions

placed on the choice probabilities by the empirical data. Here f (ai,s) =
∑T

t=1 1{ati = ai, s
t = s}

is the frequency of action-state profile (ai, s), and f (s) =
∑T

t=1 1{st = s} is the frequency of

state s. Note that the function g takes on values in Rd.

Following Schennach (2014), we define the identified region for the structural parameters

θ as

Θ0 =

{
θ ∈ Θ : inf

λ∈Λ
|Eλ×π[g(p, Z; θ)]| = 0

}
, (4)

where Λ denotes the set of all regular conditional probability measures supported on the set

of choice probabilities. The expectation Eλ×π[·] is infeasible to compute, because the true

distribution λ of the equilibrium choice probabilities is unobserved. Instead, we assume that

the market-specific choice probabilities p are correlated latent variables, with their conditional

probability measure λ treated as an infinite-dimensional nuisance parameter. In the empirical

method that we plan to pursue as described below, we will make an inference for the structural

parameters θ without having to specify this measure λ.

Indeed, Schennach (2014) shows that

θ ∈ Θ0 if and only if inf
γ∈Rd
|Eπ[g̃(Z, θ, γ)]| = 0, (5)
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for some π, where

g̃(Z, θ, γ) =

∫
g(p, Z; θ) · exp(γ′g(p, Z; θ))dF (p)∫

exp(γ′g(p, Z; θ))dF (p)
,

with a user-specified probability measure F . We let F be the probability measure of the

random variable uniformly distributed on the set of feasible choice probabilities. The following

proposition establishes that the conditions in Schennach (2014) apply under the continuity of

Ψ(·; θ) in θ ∈ Θ. A proof is provided in Appendix B.

Proposition S. Suppose that (pj, Zj)
M
j=1 is iid with support P = [0, 1]l for pj and some finite

set Z for Zj, F is the uniform distribution on P, and Ψ(·; θ) is continuous at each θ ∈ Θ.

Then the equivalence in (5) holds true.

Note that, while the intermediate problem (4) requires optimization over the infinite-

dimensional set Λ, the equivalent problem (5) entails optimization over only a finite-dimensional

Euclidean space. This property allows for a practically feasible characterization of the identi-

fied region Θ0 for the structural parameters.

Our exposition focuses on unobservable strategies as nuisance parameters, but readily

accommodates unobserved payoff elements as nuisance parameters as well. Suppose the period

payoff has additionally an additive payoff shock vij, which is time-invariant and market-

specific. The equilibrium equation system (1) becomes p ∈ Ψ(p,v; θ) and the function g

is redefined accordingly. With these modifications in place, the structural parameters can

be partially identified in the presence of unobserved heterogeneity as before. The model in

Tamer (2003) specifies a payoff function for player i of the form ui(x,p−i, vi; θ) where the

term vi enters additively, and is known to market participants but not to the econometrician.

Example 2 in Tamer (2003) assumes vi is iid across markets and uniformly distributed on

the unit interval. Interestingly, in our framework the true distribution of vij need not be

known, which is an important advantage of our method. Furthermore, the distribution can

be a discrete or continuous. This is a notable difference to the approach of Arcidiacono and

Miller (2011) which requires the researcher to use a multinomial distribution for unobserved

heterogeneity.

Next, we illustrate a simple game theoretic example that readily fits to our framework in (1)

and has received considerable attention in the empirical literature. It is a static simultaneous

move game. We shall consider the Cournot model in which output is a choice variable as

it is commonly used in empirical works. Later-on we shall consider a dynamic game of the

newspaper market in Markovian strategies which is also popular in empirical studies. Our

dynamic model includes price as a continuous choice variable.

3 Examples: Equilibrium multiplicity in games

Suppose there areN players. Each player i chooses pi to maximize payoff Ui(p1, . . . , pi, . . . , pN).

The best response function pi = arg maxx Ui(p1, . . . , x, . . . , pN) gives rise to the above fixed

point constraint.

In the Cournot case, firm i produces pi units of output with marginal cost ci(pi) and fixed

cost C. Demand is given by the inverse demand function D(Σjpj). Profit of firm i is given
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by πi(pi,Σj 6=ipj) = [D(Σjpj)− ci(pi)]pi − C. Necessary and sufficient conditions for a unique

equilibrium are given in Gaudet and Salant (1991). Multiplicity of equilibria can arise in the

Cournot model when one or more of these conditions are violated. For example, when there

are externalities in demand or in costs. A cost externalities may arise due to learning by doing

with full diffusion, see Fudenberg and Tirole (1983). To illustrate this case briefly, assume

marginal cost is piece-wise constant in which the marginal cost depends additionally (and

fully) on competitors’ output: ci(pi,Σj 6=ipj) = c1, if pi + Σj 6=ipj < P , and ci(pi,Σj 6=ipj) = c2,

if pi + Σj 6=ipj ≥ P . For c1 > c2 two types of Cournot equilibria may exist: (i) a high marginal

cost equilibrium in which total industry output is below the learning threshold P , and (ii) a

low marginal cost equilibrium in which total industry output is above the learning threshold

P . As before, equilibria can be found using the fixed point equation defined by the best

response mapping.

Multiplicity of equilibria can arise because of firm heterogeneity and fixed costs. The

identity of active firms is then not determined. For example, marginal costs may be such that

in one equilibrium firm 1 is the sole producer, but another equilibrium may have firms 2 and

3 be the sole producers. Observe also that due to firm heterogeneity in marginal costs, the

total output need not be the same across equilibria.

A static model of the newspaper market is studied in Gentzkow et al. (2014). We take

their model and extend it to a dynamic duopoly game of the news paper market explained in

more detail in Section 5. Importantly, we additionally allow for entry and exit, and dynamic

forward-looking behavior by newspapers. The newspaper market has a rich potential for

equilibrium multiplicity for a number of reasons. First, the newspaper market is two-sided,

with revenues coming from subscribers or advertisers. Newspapers can thus position their

product on advertising revenues, on subscriber revenues or something in between.

Second, entry and exit play a key role in the newspaper market which can give rise to

multiplicity as discussed in Tamer (2003).

Third, newspaper readership is loyal to their favorite newspaper, with readers being re-

luctant to switch their already familiar newspaper. Over time a race to become the leading

newspaper in subscription numbers can emerge which resembles a war of attrition game with

well known multiplicity concerns, see Hendricks et al. (1988). The benefits of being the high

circulation newspaper can be reaped by the winner.

Finally, multiplicity may also arise from unobserved market features. For example, the

proportion of people interested in political news may differ across markets giving rise to

newspapers making distinct pricing and advertising decisions across markets.

4 Econometrics

In this section we discuss inference methods for the identified set Θ0 using the characterization

in (5).

First of all, as described in Appendix F of Schennach (2014), conventional set inference

methods (e.g., Chernozhukov et al. (2007)) may be applied based on a criterion function

constructed from (5). For example, based on an iid sample (Zj)
M
j=1, the GMM-type criterion
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can be defined as

Q(θ) = sup
γ∈Rd
−1

2
ḡ(θ, γ)′V̂ (θ, γ)−1ḡ(θ, γ), (6)

where ḡ(θ, γ) = M−1
∑M

j=1 g̃(Zj, θ, γ) and V̂ (θ, γ) is some estimator of V ar(g̃(Z, θ, γ)). From

Appendix F.4 of Schennach (2014), a simple but conservative confidence set is obtained as

Ĉ = {θ ∈ Θ : −2MQ(θ) ≤ χ2
d,α}, (7)

where χ2
d,α is the (1−α)-th quantile of the χ2 distribution with degree of freedom d. Theorem

F.1 of Schennach (2014) showed its asymptotic validity in the sense that limn→∞ Pr{θ /∈ Ĉ} ≤
α for all θ ∈ Θ0.

A drawback of the confidence set Ĉ is: when the dimension d of the moment function g̃ (or

Lagrange multiplier γ) is high, the critical value tends to be large. Recall that d = ms·N ·K+1.

Thus, if the number of states, players, or actions is large, the confidence set may be too large

to obtain a meaningful conclusion.

If Q(θ) is a conventional (continuous updating) GMM criterion function, then one may

employ Kleibergen (2005) statistic that takes a quadratic form of the gradient ∂Q(θ)/∂θ.

However, in our setup the criterion Q(θ) involves the supremum over γ ∈ Rd which may be

achieved at |γ| → ∞. As discussed in Schennach (2014), p. 355, the solution “at infinity”

(|γ| → ∞) often happens when the infimum in (4) is achieved by some discrete distribution.

Here we propose an adapted version of Kleibergen (2005) statistic to the moment function

g̃ defined by the entropic latent variable integration. For each θ, let γ̃(θ) be a regularized

estimator of the solution in (6) that satisfies Assumption K (ii) in Appendix B. Then our test

statistic is written as

K(θ) = Mḡ(θ, γ̃(θ))′V̂ (θ, γ̃(θ))−1D̂(θ)
[
D̂(θ)′V̂ (θ, γ̃(θ))−1D̂(θ)

]−1

×D̂(θ)′V̂ (θ, γ̃(θ))−1ḡ(θ, γ̃(θ)), (8)

where D̂(θ) is a d× q matrix with the l-th column

∂ḡ(θ, γ̃(θ))

∂θl
− Ĝl(θ, γ̃(θ))′V̂ (θ, γ̃(θ))−1ḡ(θ, γ̃(θ)),

and Ĝl(θ, γ) = M−1
∑M

j=1 g̃(Zj, θ, γ)∂g̃(Zj, θ, γ)/∂θl. The limiting distribution of this statistic

is obtained as follows.

Proposition K. Suppose Assumption K in Appendix B and the assumptions of Proposition

S hold. Then K(θ0)
d→ χ2

q for each θ0 ∈ Θ0.

Based on this statistic, the confidence set is obtained as

C̃ = {θ ∈ Θ : K(θ) ≤ χ2
q,α}, (9)

where χ2
q,α is the (1 − α)-th quantile of the χ2 distribution with degree of freedom q. Note

that the critical value χ2
q,α depends only on the dimension of structural parameters θ and is

robust to the dimension of the moment function g̃.
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5 Newspaper market

This section describes the newspaper market, tests for equilibrium multiplicity, and presents

an estimable dynamic model.

The US newspaper market has been studied in the influential work by Gentzkow et al.

(2014). We obtained the publicly available data on circulation, annual subscription price and

advertising price for local US newspaper markets at four-year intervals between 1869 and

2004.1 We select all 538 duopoly markets that are markets with at most two active local

newspapers in any given year.

5.1 Descriptive sample statistics

Table 1 provides summary statistics for selected variables. All dollar values are measured in

constant 1984 dollars. On average 0.84 newspapers are active in a given year. No newspaper

exists on 31% of time periods, one newspaper is circulated on 54% of time periods and two

newspapers exist on 15% of time periods. The average newspaper has a circulation of about

10,000. The average annual subscription price equals $50 per year. The average advertising

price equals $25 which is measured per line or per inch. Accounting for circulation numbers,

the advertising price per circulated newspaper is small and equals $0.0025. Note that the

subscription price is missing on 15% and the advertising price is missing on 47% of occasions.

Table 1: Descriptive Summary Statistics
Variable No of Obs. Mean Std Dev Min Max

Number of Newspapers 18,830 0.84 0.66 0 2
Circulation 14,747 10,030 22,395 100 762,639
Annual Subscription Price 12,575 49.38 16.99 2.39 269.06
Advertising Price 7,664 24.58 142.17 0.27 3,027.25

Entry and exit are common in this industry. There are in total 1,029 occasions of newspaper

entries and 1,448 occasions of newspaper exits. When there is no active newspaper in the

market, there is about a 5% chance that an entry occurs during a time period. The exit rate

when there is only one active newspaper is of the same magnitude with 5%. The entry and

exit rates are higher when there is one respectively two newspapers in the market. The entry

rate increases to 7% and the exit rate to 32%. That is, when two newspapers are active, which

occurs on 15% of time periods, then there is about a one-third chance that at least one of the

papers exits.

Before proceeding with our model and estimator, we consider tests for equilibrium multi-

plicity based on market share data.

5.2 Equilibrium multiplicity

Otsu et al. (2016) propose a statistical test for equilibrium multiplicity which we shall apply.

The null hypothesis of the test is that the steady state distribution of market shares is identical

1The data are publicly available at https://people.stanford.edu/gentzkow/data.

8



across markets. The alternative is the negation of the null. To construct the test statistic

we partition the market share data into ten bins. The critical value for the test statistic is

obtained by bootstrapping. The Q-statistic equals 36.83 while the critical value equals 12.18.

We can reject the null hypothesis of identical market share distributions.

We looked at several robustness checks. First, we considered finer partitions consisting of

20 bins. The resulting Q-statistic equals 37.66 while the critical value equals 12.91. Again,

we can reject the null hypothesis of identical market share distributions.

Second, we divided the data into small and large markets based on the maximum circula-

tion achieved in any year. Small markets are those below the median circulation level. The

Q-statistic for small markets equals 23.69 while the critical value equals 5.93. The Q-statistic

for large markets equals 12.53 while the critical value equals 6.22. We can reject the null

hypothesis of identical market share distributions for both, small and large markets.

Next, we formulate an estimable dynamic game.

5.3 Dynamic game played by newspapers

Our dynamic duopoly game shares key features with the static model of Gentzkow et al. (2014),

but additionally allows for (i) entry and exit and (ii) dynamic forward-looking behavior by

newspapers. We make the following assumptions.

5.3.1 Model assumptions

Time is discrete, t = 1, 2, . . .. Every period t the following stage game is played: Initially,

newspapers (and the econometrician) observe publicly a vector of last period market shares

st−1. Then newspapers make decisions about entry/exit et = (e1t, e2t) with eit ∈ {0, 1},
subscription price pt = (p1t, p2t), and advertising price At = (A1t, A2t), simultaneously. At

the end of the period, current period market shares st = (s1t, s2t) are realized. The circulation

of newspaper i in period t is given by sit · S, where the total market size S is market specific

and constant over time. The firms then collect their period payoffs. Following Gentzkow et al.

(2014), the period payoff realization of newspaper i is specified as

πi(et,pt,At, st−1, S, ξ;θ) = eit ·S · [sit(et,pt, st−1, ξ
n;θ1) · {pit− θ2 +Ait ·ϕ(Ait, ξ

A;θ3)}+ ξmi ],

where ξ = (ξn1 , ξ
n
2 , ξ

A
1 , ξ

A
2 , ξ

m
1 , ξ

m
2 ) is a vector of subscription demand ξn = (ξn1 , ξ

n
2 ), advertising

demand ξA = (ξA1 , ξ
A
2 ), and market shocks ξm = (ξm1 , ξ

m
2 ) for newspapers. The additive

term ξmi denotes a market-specific unobservable element observed by both firms but not the

econometrician, such as operating fixed costs, as in Tamer (2003), which can be positive

or negative. Total revenues consist of the sum of subscription and advertising revenues.

The functional form of subscription and advertising demand and their respective shocks are

explained below. The production costs exhibit constant marginal costs θ2. Notice that the

period payoff realization of an in-active newspaper i, eit = 0, is equal to zero. The parameters

of interest are described by the vector θ = (θ′1, θ2,θ
′
3)′.

Following the literature on dynamic game estimation, see Aguirregabiria and Nevo (2013)

for a survey, we assume that every newspaper i maximizes the sum of expected discounted
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future period payoffs with the common discount factor β < 1,

E

[
∞∑
t=1

βt−1πi(et,pt,At, st−1, S, ξ;θ)

∣∣∣∣∣ s0, S, ξi

]
,

where the expectation is taken over realizations of future demand shocks, and ξi are the

elements of the period shock ξ which are observable to newspaper i when it makes it’s decisions.

Decisions are made in pure type-symmetric Markovian strategies. A pure type-symmetric

Markovian strategy for newspaper i is a tuple of functions ai = (ei, pi, Ai), where ei(s, S, ξi)

denotes the entry/exit strategy, pi(s, S, ξi) the price choice, and Ai(s, S, ξi) the advertising

choice of newspaper i when markets shares equal s and the observable market attribute is

S. The time subscript is omitted for simplicity of exposition. Let σi denote player i’s belief

about the probability distribution of actions and state transitions. For example, σi(a|s, S, ξi)
denotes newspaper i’s conditional ex ante belief that action profile a = (a1, a2) is taken when

the information available to newspaper i is given by (s, S, ξi).

A Markov Perfect Equilibrium (MPE) is a pair of strategies and beliefs (a,σ) = (a1, a2, σ1, σ2)

that satisfies two conditions: (i) each player’s strategy ai is a best response to a−i given beliefs

σi, and (ii) each player’s beliefs σi are consistent with strategies a and the underlying shocks

ξ.

5.3.2 Law of motion for states and demand specification

The law of motion of the market shares is stochastic and governed by consumers’ demand

decisions. Newspaper demand is a standard differentiated products logit model while incor-

porating a key feature that readers can be loyal to their favorite newspaper, which is a new

and empirically important feature. Let i′ denote the newspaper purchased by a household b

in period t−1. We model the indirect utility of household b purchasing newspaper i in period

t at price pit as

ub(i, i
′, pit) = θ10 + θ11 · 1{i = i′} − θ1p · pit + ξni + εib,

where the random utility component ξni + εib captures unobserved newspaper shock ξni , such

as the quality shocks to the editorial team which affects all households jointly, and household

specific preference shocks εib. The newspaper shock ξni is drawn from a mean zero normal pdf

φ(·|σ2
p) and observed after period pricing decisions have been made, and εib is a log Weibull

distributed random shock observed by household b. The parameters of interest are θ1 =

(θ10, θ11, θ1p, σ
2
p)
′, where θ10 is an intercept, θ11 denotes the loyalty or satisfaction parameter,

θ1p is the subscription price sensitivity parameter, and σ2
p is the variance of the unobserved

newspaper shocks ξni . We normalize the utility of not buying a newspaper to zero, ub(�, i′) = 0.

The choice set for household b is determined by newspaper availability e, as newspaper i is

available for purchase for household b in period t only if the newspaper is active, ei = 1. With

many households per market the purchase probability is given by the usual logit form

Pr{i, i′|p, e, ξn;θ1} =
ei · exp(θ10 + θ11 · 1{i = i′} − θ1p · pi + ξni

1 +
∑

i′′∈{1,2} ei′′ · exp(θ10 + θ11 · 1{i′′ = i′} − θ1p · pi′′ + ξni′′)
.
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The loyalty parameter θ11 reflects the utility increment of buying a newspaper that is already

familiar to the consumers. Notice that consumers make a static (myopic) choice every period

and do not take the effect of their choices on the future into account. We believe that the

assumption of myopic behavior by consumers is reasonable for this market.

The logit choice probabilities enable us to derive the law of motion of market shares by

taking into account the editorial shocks ξn and last period market shares st−1. The market

share realization is given by

si(st−1,p, e, ξ
n;θ1) =

∑
i′∈{0,1,2}

Pr{i, i′|p, e, ξn;θ1} · si′,t−1.

The expected market share si, with expectations taken over the unobserved newspaper shocks,

equals

si(st−1,p, e) =

∫∫
si(st−1,p, e, ξ

n;θ1)φ(ξn1 |σ2
p)φ(ξn2 |σ2

p)dξ
n
1 dξ

n
2 .

The advertisers’ demand is static and given by the following reduced-form linear demand

function:

ϕ(Ai, ξ
A;θ3) = ψ · {2 exp(ξAi )− Ai},

where ξAi is a random intercept variable observed prior to the choice of advertising price Ai.

The random variable ξAi is drawn from a normal pdf φ(·|θ30, σ
2
A) with mean θ30 and variance

σ2
A. The advertising parameter vector is given by θ3 = (θ30, σ

2
A)′. Advertising profits, which

are measured per inch, per copy and per subscriber, are multiplied by a factor ψ to obtain

advertising profits for the newspaper per subscriber and per year. The traditional size of US

newspapers is half a broadsheet or 15 by 223
4

inches. We assume a maximum of 32 advertising

pages per newspaper copy and calibrate ψ to be about 3.3 million 1 inch advertisements a

reader could see per year.2 Gentzkow et al. (2014) consider a related specification in which

the mass of advertisers per newspaper equals one.

With the payoffs and the law of motion for the state variables defined we can now examine

the equilibrium conditions.

5.4 Equilibrium conditions

In equilibrium players follow Markovian strategies (ai)
2
i=1 = (ei, pi, Ai)

2
i=1, which maximize the

sum of expected discounted future period payoffs given the beliefs. The strategies determine

entry/exit e, subscription price p, and advertising price A. The decisions are made after

observing the own advertising demand ξAi and market characteristics ξmi , but before editorial

shocks ξn are observed. The law of motion of the state variables depends on the choices made

by newspapers, consumers and the editorial shocks ξn. The informational environment is a

’private information’ setting in which newspaper i observes the own advertising shock but not

competitor’s shock. Although not the focus of our analysis, our estimation approach can be

readily extended to encompass flexibility in the underlying informational environments as in

2The maximum number appears in line with estimates. E.S. Turner, The Shocking History of Advertising
1965, page 124) calculates that in the mid 19th century New York’s newspapers published 1,456,416 ads in a
year.
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Bergemann et al. (2017). What newspapers known about the advertising demand shocks ξA

when making decisions can be captured by an additional nuisance parameter.

Following the dynamic estimation literature we impose a parametric functional form on

price and entry strategies, commonly referred to as a policy function. The parameters for the

strategies are denoted with τ = (τ1, τ2, τ3, τ4, τ5) ∈ T for a compact set T. Using a paramet-

ric functional form facilitates numerical calculations and thus estimation considerably. The

unrestricted (non-parametric) case is discussed in Appendix A. The specified policy function

assumes price is non-negative, and when positive, linear in marginal costs plus an advertising

intercept,

pi(s, ξ
A;θ, τ ) = max{(τ1 + τ2si + τ3s3−i) · θ2 + τ4 exp(ξAi )2, 0},

where the parameters (τ1, τ2, τ3) describe the markup over costs attributable to a constant,

own and rival market shares, and the parameter τ4 measures variations due to the advertising

intercept. The entry/exit strategy is postulated as

ei(s, ξ
A, ξm;θ, τ ) = 1{si · {pi(s, ξi)− θ2 + exp(ξAi )2} − τ5ξ

m
i ≥ 0},

where the parameter τ5 measures the proportional factor of fixed costs that variable profits

need to cover for the newspaper to remain active. Our model assumes that the market size

variable S enters multiplicatively, multiplying both variable profit and cost terms, and thus

does not affect strategies.

The advertising price does not have dynamic linkages and can be solved by using a static

first order condition

2 exp(ξAi )− 2Ai = 0, or Ai(s, ξi) = exp(ξAi ).

The parametric class of strategies can be viewed as a linear approximation to the unrestricted

class over the relevant range. Observe that the class could readily made richer, say by including

more parameters capturing higher order terms of state variables, and thus eventually allowing

accurate approximation to the unrestricted class.

Strategies are in equilibrium if strategy ai maximizes newspaper i’s sum of expected future

payoffs. As payoffs are differentiable, a necessary condition for a local maximum in terms of

the policy function parameter vector τ is given by the following first order condition

∂Eσi [
∑∞

t=1 β
t−1πi(ai, a3−i, st−1, S, ξ;θ)| s0, S, ξi]

∂ai

∂ai
∂τj

= 0 for all i, j, (s0, S, ξi). (10)

Adding τj on the left and right hand side of the first order condition for τj gives the j-th

equation of the fixed point problem (1). Notice that this equation system may have multiple

solutions because there can be multiple equilibria. Pesendorfer and Schmidt-Dengler (2008)

analyze a simple dynamic entry-exit game with two players and find five equilibria. Doraszelski

and Satterthwaite (2010) also provide several examples of games with multiple equilibria. Our

estimator for the identified region explicitly allows for equilibrium multiplicity. Notice also

that the choice of the set T may include parameter vectors for which the sum of expected

future payoffs is zero, because the policy function requires all firms to be inactive. Such

parameter vectors constitute a minimum and are not desirable. In our implementation of the
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estimator, we adjust the policy parameter space T by dropping parameter values τ where

zeros to the condition (10) correspond to a point where the sum of expected future payoffs

is zero. Also note that we approximate the sum of expected future payoffs numerically by

forward simulation using a finite number of periods. We evaluate the equilibrium conditions

on a grid S′ of selected states.

To allow for equilibrium multiplicity and unobserved market-level heterogeneity in the

estimation, we consider an estimation approach based on moment condition (3) that explicitly

allows for distinct strategies across markets. We describe our estimator next.

5.5 Moment condition and estimator

While the moment condition (3) considers the unrestricted case, our application defines the

moment condition using a parametric functional form for the policy function, which facil-

itate the numerical calculations and performance of the estimator for our data. The mo-

ment function g in our application consists of the equilibrium condition (10) defined on the

compact parameter set T plus two empirical moment conditions consisting of the first and

second moments of subscription prices at the market level. The first empirical moment con-

dition is the difference between the theoretical subscription price and the observed analogue,

pi(s, ξ
m;θ, τ ) − pis, summed across observed states and players. The second moment is in

terms of the difference between the squared theoretical subscription prices and it’s observed

counterpart. The function g for a newspaper market is given by,

g(Z, τ , S, ξ;θ, τ ) =


∑

i,j,s0

(
∂Eσi [

∑∞
t=1 β

t−1πi(ai,a3−i,st−1,S,ξ;θ)|s0,S,ξi]
∂ai

∂ai
∂τj

)2

∑
i,s{pi(s, ξ

A;θ, τ )− pis}∑
i,s{pi(s, ξ

A;θ, τ )2 − p2
is}

 . (11)

The first part vanishes when an equilibrium is reached. The second and third part link

the theoretical strategies to the observables. They vanish when the parameter vector (θ, τ )

achieves a good fit.

We employ the GMM criterion function Q(θ), defined in (6), where

g̃(Z, θ, γ) =

∫
g(Z, τ , S, ξ;θ, τ ) · exp(γ′g(Z, τ , S, ξ;θ, τ ))dU(τ , ξ)∫

exp(γ′g(Z, τ , S, ξ;θ, τ ))dU(τ , ξ)
.

The conservative confidence region Ĉ is calculated by using (7). With three moment conditions,

the 1% critical value equals 11.345. The confidence region C̃ defined in (9) has the critical

value 6.635.

A key element in our estimator is that the policy functions may differ across markets due

to two reasons: (i) market heterogeneity as captured by observable and unobservable elements

in ξm and (ii) equilibrium multiplicity as captured by parameters τ . Notice though that we

assume newspapers within a market use identical strategies. The latter assumption is made

to simplify the problem and could easily be relaxed by allowing the parameters τ to differ

across newspapers.

Next, we report and illustrate our estimation results.
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6 Estimation results

This section reports our estimation results. Our estimation approach explicitly allows for

distinct strategies and unobserved heterogeneity across markets.

We use a two step approach to estimate the parameters of interest. The first step recovers

the demand parameters (θ1,θ3) from the market share and price data. The second step

characterizes the identified region of marginal cost parameters θ2.

In the first step we estimate the subscription and advertising demand parameters. The

subscription demand parameter vector θ1 is estimated using the method of moments by com-

paring the mean and variance of the observed and predicted market shares conditional on

state variables. The data include information on the market shares (stj)j,t and subscription

prices (ptj)j,t observed every four years. The subscription price is assumed exogenous for read-

ers. The advertising demand parameter vector θ3 is estimated from the observed advertising

prices (Ait)i,t using the method of moments based on the first order condition, exp(ξAi )−Ai = 0.

The data do not include information on the number of advertisings per newspaper, and our

formulation of advertising profits is driven by this functional form assumption. The following

table summarizes our first stage coefficient estimates with standard errors in parenthesis.

Table 2: Estimates of subscribers and advertisers demand

Parameter θ10 θ11 θ1p σp θ30 σA

Estimate -2.8504 22.586 0.0204 1.3146 -7.5594 0.9644
Standard Deviation (0.021) (6.519) (0.001) (0.008) (0.050) (0.083)

The subscription demand estimates imply a high degree of readership persistence. Readers

are loyal to their newspaper and reluctant to switch. The demand elasticity implied from the

estimates at the average subscription price of 50 at a market share of 1/2 amounts to −0.51.

Notice that the standard errors are small. In part this is attributable to the fact that the data

are very rich. In practice, it enables us to ignore the first stage estimation error in the second

step.

The second step recovers the underlying cost parameter θ2 by maximizing the GMM-type

criterion function Q(θ), defined in (6), and using moment condition (11). The sum of expected

future payoffs is calculated using 100 sample paths, r = 1, . . . , 100, where each path forward

simulates 80 years using a sequence of independently drawn shocks ξ̃t = (ξn1t, ξ
n
2t, ξ

A
1t, ξ

A
2t) for

t = 1, . . . , 80. The sequences of demand side error draws ξ̃ = ((ξ̃
r

t )
80
t=1)100

r=1 are held fixed

throughout the procedure. The derivative of the value function is calculated numerically by

using a 10% change in the τ parameters. The annual discount factor is calibrated at 0.95.

Computation of the criterion function Q(θ) takes a uniformly drawn set of parameters τ

with τ1 ∈ [0.9, 1.5], τ2 ∈ [−0.2, 0.2], τ3 ∈ [−0.2, 0.2], τ4 ∈ [−0.1, 1], τ5 ∈ [0, 2], and ξm ∈ [−1, 1]

and finds the three-dimensional parameter vector γ that maximizes the right hand side of (6)

for a given value of the parameter θ2. The moment condition g̃ is calculated by integrating

the moment condition g for each market over the parameter values τ , ξm by using Monte

14



Carlo integration and then summing across all markets. We use 1, 000 uniform draws to

approximate the integral and the draws are held fixed in the procedure. Draws for which the

expected discounted sum of payoffs is zero are omitted. Individual markets have identical

weight in our procedure. We omit data points with missing price or market share data, or

where there are fewer than 10 observations in a market. We assume that the observability of

data is exogenous to our data generating process. In total we use 4, 596 data points for 144

markets.
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Figure 1: Objective function −2MQ(θ2) evaluated at different values of marginal cost
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Figures 1 and 2 plot the value of the criterion function stemming from the statistics (6)

and (8) along with critical values for a grid of marginal cost parameter values θ2. Figure 1

considers the objective function −2MQ(θ2) with critical value c3,α = 11.345. We performed

a grid search over the marginal cost parameter from 0 to 80. Figure 1 illustrates that the

interval [28, 50] constitutes the 99% confidence region for the statistic based on (6).
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Figure 2: Objective function K(θ2) evaluated at different values of marginal cost
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Figure 2 zooms in on the relevant cost range from 30 to 50, and considers the criterion

K(θ2) based on equation and (8) with critical value c1,α = 6.635. The 99% confidence region

for marginal costs is now narrower and becomes the interval [42, 47]. Figure 2 shows that the

adapted criterion, which depends only on the dimension of structural parameters θ and not

on the dimension of the moment function g, gives a much sharper prediction in our case.
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Our measure of marginal costs, which excludes operating fixed costs and sunk costs, is

between 84% and 94% of marginal revenue. The implied per-period mark-up estimates are

in line with the ones found in the static model of Gentzkow et al. (2014). A key difference

is that we consider a dynamic framework with loyal readers newspapers in which newspapers

have an additional incentive to price low in order to increase the customer base for the future.

This effect is absent in a static model.

7 Conclusions

A novel multiplicity-robust inference method has been proposed for a class of economic models

that can be written as a fixed point problem. The class includes static games and dynamic

Markov games. Our proposed method allows for distinct behaviors and strategies across mar-

kets. The main idea is to treat market specific behaviors as correlated latent variables. Instead

of solving the primal problem, we consider the equivalent dual problem which entails opti-

mization over only a finite-dimensional Euclidean space. This property allows for a practically

feasible characterization of the identified region for the structural parameters.

Our application illustrates the feasibility of the inference method by considering dynamic

competition in the US newspaper market. Statistical tests of equilibrium multiplicity con-

firm that multiplicity is a concern in these data. In implementing the estimator, we restrict

attention to a class of parametric strategies, or policy functions, which allow us to reduce

the complexity of the numerical problem and permits estimation in practice. As was shown

in the static contexts, e.g. Ciliberto and Tamer (2009), multiplicity of equilibria results in

partial identification. We find that the identified region of marginal costs amounts to costs

being between 84% and 94% of the newspaper revenues. Our method provides a practically

attractive computational procedure to obtain the identification region in dynamic games and

also static games.
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A Characterization of equilibrium

This appendix characterizes the equilibrium for the case in which no parametric restrictions

are placed on the equilibrium. The resulting equilibrium equations can be used for a non-

parametric approach. We shall consider entry, advertising, and subscription price choices.

First, observe that it is optimal in state s to be active if doing so achieves the high

continuation value

ei(s0, ξi) =


1

if S ·
[
si(e,p, s0, ξ

n;θ1) · {pi(s0, ξi)− θ2 + Ai(s0, ξi) · ϕ(Ai(s0, ξi), ξ
A;θ3)}+ ξmi

]
+E [

∑∞
t=2 β

t−1πi(et,pt,At, st−1, S, ξ;θ)| s1, S, ξi]

> 0 + E
[∑∞

t=2 β
t−1πi(et,pt,At, st−1, S, ξ;θ)| (0, s′−i,1), S, ξi

]
;

0 otherwise.
(12)

Second, observe that the equilibrium advertising price is characterized by the first order

condition with respect to Ai which implies

Ai(s0, ξi) = exp(ξAi ) (13)

Notice that the continuation value does not enter here as advertising affects only current

period payoffs.

Finally, the equilibrium subscription price is characterized by the necessary first-order

condition consisting of the usual static components plus the change in the future sum of

expected payoffs divided by the change in expected market shares of a one period price change

pi(s0, ξi) = θ2 − Ai(s0, ξi)ϕi(Ai(s0, ξi))−
si(e,p, s0, ξ

n;θ1)

∂si(e,p, s0, ξ
n;θ1)/∂pi

(14)

+
1

∂si(e,p, s0, ξ
n;θ1)/∂pi

∂E [
∑∞

t=2 β
t−1πi(et,pt,At, st−1, S, ξ;θ)| s1, S, ξi]

∂pi
.

Equations (12)-(14) characterize the set of equilibria. The equations give rise to a fixed

point problem for equilibrium choices. Equation (13) is a static condition which can be solved

separately.

B Mathematical appendix

B.1 Proof of Proposition S

To apply Schennach (2014, Theorem 2.1) in our setup, it is enough to verify that κ(γ, θ) =

E[log
∫

exp(γ′g(p, Z; θ))dF (p)] exists and is twice continuously differentiable with respect to

γ for all γ ∈ Rd.

First, we show existence of κ(γ, θ). Pick any γ ∈ Rd and θ ∈ Θ and denote γ̄ =
∑L

l=1 |γl|.
Since

exp(−γ̄) ≤ exp(γ′g(p, z; θ)) ≤ exp(γ̄),
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for all (p, z) ∈ P × Z, it holds

−γ̄ ≤ log

∫
exp(γ′g(p, z; θ))F (p) ≤ γ̄,

for all z ∈ Z. Therefore, κ(γ, θ) exists as claimed.

Next, we show that κ(γ, θ) is twice continuously differentiable with respect to γ for

all γ ∈ Rd. Since Ψ(·, θ) is continuous by assumption, so is g(·, z; θ) for each z ∈ Z.

Then the derivatives ∂
∂γ

exp(γ′g(·, z; θ)) = exp(γ′g(·, z; θ))g(·, z; θ) and ∂2

∂γ∂γ′
exp(γ′g(·, z; θ)) =

exp(γ′g(·, z; θ))g(·, z; θ)g(·, z; θ)′ are also continuous for each z ∈ Z. Thus, the following inte-

grals exists for each z ∈ Z

∂

∂γ

∫
exp(γ′g(p, z; θ))dF (p) =

∫
exp(γ′g(p, z; θ))g(p, z; θ)dF (p),

∂2

∂γ∂γ′

∫
exp(γ′g(p, z; θ))dF (p) =

∫
exp(γ′g(p, z; θ))g(p, z; θ)g(p, z; θ)′dF (p).

Now consider the functions δk(z) = ∂
∂γk

log
∫

exp(γ′g(p, z; θ))dF (p) and

δkl(z) = ∂2

∂γl∂γk
log
∫

exp(γ′g(p, z; θ))dF (p) for all k, l = 1, . . . , d. By the above integrals, we

obtain

δk(z) =

∫
gk(p, z; θ) exp(γ′g(p, z; θ))dF (p)∫

exp(γ′g(p, z; θ))dF (p)
,

δkl(z) =

∫
gl(p, z; θ) exp(γ′g(p, z; θ))dF (p)∫

exp(γ′g(p, z; θ))dF (p)
·
∫
gk(p, z; θ) exp(γ′g(p, z; θ))dF (p)∫

exp(γ′g(p, z; θ))dF (p)

−
∫
gl(p, z; θ)gk(p, z; θ) exp(γ′g(p, z; θ))dF (p)[∫

exp(γ′g(p, z; θ))dF (p)
]2 .

Thus, we can deduce |δk(z)| ≤ exp(2γ̄) and |δkl(z)| ≤ exp(4γ̄) + exp(3γ̄) < ∞ for all z ∈ Z
and k, l = 1, · · · , d. Therefore, κ(γ, θ) is twice continuously differentiable and the conclusion

follows.

B.2 Assumptions and proof for Proposition K

Let R̄ = R∪{+∞}∪{−∞} and define γ0 ∈ R̄d such that infγ∈Rd |Eπ[g̃(Z, θ, γ)]| = limγ→γ0 |Eπ[g̃(Z, θ, γ)]|.
Note that elements of γ0 may be infinity. Also let G̃k(z, θ, γ) = ∂

∂θk
g̃(z, θ, γ), G̃(·, θ, γ) =

[G̃1(·, θ, γ), . . . , G̃q(·, θ, γ)], dz be the cardinality of Z, and GMf(·) =
√
M{M−1

∑M
j=1 f(Zj)−

E[f(Z)]} for a function f on Z.

For every θ0 ∈ Θ0, we impose the following assumptions.

Assumption K.

(i) The limits g̃(z, θ0, γ0) = limγ→γ0 g̃(z, θ0, γ) and G̃k(z, θ0, γ0) = limγ→γ0 G̃(z, θ0, γ) exist for

each z ∈ Z and k ∈ {1, . . . , q}.
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(ii) There exist γ̃(θ0) such that as M →∞,

ζM(θ0) =



GM g̃(·, θ0, γ0)

vec(
√
M{g̃(z, θ0, γ̃(θ0))− g̃(z, θ0, γ0)}z∈Z)

vec(GMG̃(·, θ0, γ0))

vec(
√
M{G̃1(·, θ0, γ̃(θ0))− G̃1(·, θ0, γ0)}z∈Z)

...

vec(
√
M{G̃q(·, θ0, γ̃(θ0))− G̃q(·, θ0, γ0)}z∈Z)


d→ N(0,Ω(θ0)),

for some variance matrix Ω(θ0).

(iii) There is a consistent estimator Ω̂(θ0) of Ω(θ0).

(iv) The matrix

[Id, (vecP{Z = z}z∈Z)′]⊗ IdΩ†(θ0)[Id, (vecP{Z = z}z∈Z)′ ⊗ Id]′

has the full rank, where Ω†(θ0) denotes the top left d(1 + dz)-by-d(1 + dz) portion of

Ω(θ0).

Under these assumptions and the ones imposed for Proposition S, we can show that K(θ0)

defined in (8) converges in distribution to the χ2
q distribution.

For the rest of this subsection, we suppress θ0 in the arguments of functions. For example,

g̃(·, γ̃) means g̃(·, θ0, γ̃(θ0)). For Proposition K, it is enough to show the following lemmas.

Lemma K1. Suppose Assumption K (i)-(ii) and the assumptions for Proposition S hold.

Then

GM{g̃(·, γ̃)′, G̃1(·, γ̃)′, · · · , G̃q(·, γ̃)′} = GM{g̃(·, γ0)′, G̃1(·, γ0)′, · · · , G̃q(·, γ0)′}+ op(1).

Lemma K2. Suppose Assumption K (i)-(ii) and the assumptions for Proposition S hold.

Then 
1√
M

∑M
j=1{g̃(Zj, γ̃)− E[g̃(Z, γ0)]}

1√
M

∑M
j=1{G̃1(Zj, γ̃)− E[G̃1(Z, γ0)]}

...
1√
M

∑M
j=1{G̃q(Zj, γ̃)− E[G̃q(Z, γ0)]}

 d→ N(0, RΩR′),

where

R =

(
Id (vecP{Z = z}z∈Z)′ ⊗ Idg 0 0

0 0 Iq ⊗ Id Iq ⊗ ((vecP{Z = z}z∈Z)′ ⊗ Id)

)
.

The above variance matrix RΩR′ can be estimated by R̂Ω̂R̂′, where Ω̂ is given by Assump-

tion K (iii) and R̂ is obtained by replacing P{Z = z} in the definition of R with the sample
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frequency M−1
∑M

j=1 I{Zj = z}. Based on the definition, we decompose

RΩR′ =

(
V V gG

V Gg V GG

)
, R̂Ω̂R̂′ =

(
V̂ V̂ gG

V̂ Gg V̂ GG

)
,

where V̂ is a d × d matrix, V̂ Gg = [V̂ G1g′, . . . , V̂ Gqg′]′ is a dq × d matrices, V̂ G1g′ is a d × d
matrix, and so on. Then we define

D =
[
E[G̃1(Z, γ0)]− V G1gV −1E[g̃(Z, γ0)], . . . , E[G̃q(Z, γ0)]− V GqgV −1E[g̃(Z, γ0)]

]
,

D̂ =

[
1

M

M∑
j=1

G̃1(Zj, γ̃)− V̂ G1gV̂ −1 1

M

M∑
j=1

g̃(Zj, γ̃),

. . . ,
1

M

M∑
j=1

G̃q(Zj, γ̃)− V̂ GqgV̂ −1 1

M

M∑
j=1

g̃(Zj, γ̃)

]
.

Note that D is well-defined under Assumption K (iv). We obtain the following orthogonal

decomposition of the joint asymptotic normality result.

Lemma K3. Suppose Assumption K and the assumptions for Proposition S hold. Then

1√
M

M∑
j=1

g̃(Zj, γ̃)
d→ ξ ∼ N(0, V ),

√
Mvec(D̂ −D)

d→ ξD ∼ N(0, VD),

where ξ and ξD are independent and VD = V GG − V GgV −1V gV .

Based on these lemmas, we obtain(
1√
M

M∑
j=1

g̃(Zj, γ̃)′V̂ −1D̂

)
(D̂′V̂ −1D̂)−1/2 d→ N(0, Iq),

and the conclusion of Proposition K follows. Below we provide proof for the above lemmas.

Proof of Lemma K1

Pick any j = 1, . . . , d. Let G̃j = {g̃j(·, γ) : γ ∈ Rd}. Since Z is a finite set yielding the

bracketing number N[](ε, G̃j, L2(π)) ≤ (2/ε)dz , G̃j is π-Donsker. Also note that g̃j(·, γ0) ∈
L2(π) is true because g̃j is bounded on the finite set Z. Furthermore, Assumption K (ii)

implies
[∫
{g̃j(z, γ̃)− g̃j(z, γ0)}2dπ(z)

] 1
2

p→ 0. Therefore, we have GM{g̃j(·, γ̃)− g̃j(·, γ0)} p→ 0

by van der Vaart (1998, Lemma 19.24).

Similarly, Assumption K (ii) implies

[∫ (∂g̃j(z,γ̃)

∂θk
− ∂g̃j(z,γ0)

∂θk

)2

dπ(z)

] 1
2 p→ 0, and we have

GM

(
∂g̃j(·,γ̃)

∂θk
− ∂g̃j(·,γ0)

∂θk

)
p→ 0 for each k = 1, . . . , q by van der Vaart (1998; Lemma 19.24). The

conclusion therefore follows.
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Proof of Lemma K2

By Lemma K1,

1√
M

M∑
j=1

{g̃(Zj, γ̃)− E[g̃(Z, γ0)]} = GM g̃(·, γ0) +
√
ME[g̃(Z, γ̃)− g̃(Z, γ0)] + op(1),

1√
M

M∑
j=1

{G̃1(Zj, γ̃)− E[G̃1(Z, γ0)]} = GMG̃k(·, γ0) +
√
ME[G̃k(·, γ̃)− G̃k(·, γ0)] + op(1),

for each k = 1, . . . , q. Thus, we can write
1√
M

∑M
j=1{g̃(Zj, γ̃)− E[g̃(Z, γ0)]}

1√
M

∑M
j=1{G̃1(Zj, γ̃)− E[G̃1(Z, γ0)]}

...
1√
M

∑M
j=1{G̃q(Zj, γ̃)− E[G̃q(Z, γ0)]}

 = RζM + op(1),

and the conclusion follows by Assumption K (ii).

Proof of Lemma K3

By Assumption K (iii), we have(
Id 0

−V̂ GgV̂ −1 Idq

)
p→
(

Id 0

−V GgV −1 Idq

)
.

Therefore, the claimed result follows from Lemma K2 and Slutsky’s theorem.

B.3 Computation of γ̃(θ)

Take any θ0 ∈ Θ. To implement statistical inference based on the statistic K(θ0) in (8), we

need to compute γ̃(θ0). If the infimum infγ∈Rd |E[g̃(Z, θ0, γ)]| is achieved by an interior point,

we can employ the solution of (6) as γ̃(θ0), which satisfies Assumption K (ii) under mild

regularity conditions. However, in our setup, it is often the case that the infimum is achieved

“at infinity”, i.e., γ0 ∈ R̄d with |γ0| = ∞. In this section, we propose a method to compute

γ̃(θ0) in such a scenario. More precisely, we consider the following setup.

Assumption G.

(i) There exist positive constants α and β such that infγ:|γ|≤r |E[g̃(Z, θ0, γ)]|2 ≥ 1
α+rβ

for all

r > 0.

(ii) There exists a positive constant ϕ such that

|E[g̃l(·, θ0, γ)]| ≥ ϕ
∑
z∈Z

|g̃l(z, θ0, γ)− g̃l(z, θ0, γ0)|

for all γ ∈ Rd and l = 1, . . . , d.
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(iii) There exist positive constants a and b such that for any stochastic sequence {γM} satis-

fying g̃(z, θ0, γM)
p→ g̃(z, θ0, γ0) over z ∈ Z, it holds:

|g̃l(z, θ0, γM)− g̃l(z, θ0, γ0)| ≤ a

|γM |b
w.p.a.1,∣∣∣∣∂g̃l(z, θ0, γM)

∂θk
− ∂g̃l(z, θ0, γ0)

∂θk

∣∣∣∣ ≤ a

|γM |b
w.p.a.1,

for all z ∈ Z, k = 1, . . . , q, and l = 1, . . . , d.

Assumption G (i) requires that γ0 is at infinity in the sense that the objective function is

bounded away from zero for small |γ|. Assumption G (ii) guarantees that γ0 uniquely achieves

the moment equality E[g̃(·, θ0, γ)] = 0. Under this assumption, we propose to choose γ̃(θ0) as

γ̂M(θ0) = arg min
γ:rM≤|γ|≤RM

|ḡ(θ0, γ)|2

|γ|
, (15)

where rM and RM are tuning constants satisfying: M−(1+β−b)/2brM → ∞, M−(1+β)/2bRM →
c ∈ (0,∞), and rM/RM → 0 as M → ∞. For example, one can choose rM ∝ M (1+β−b/2)/2b

and RM ∝M (1+β)/2b.

Under Assumption G, we can show that the following result on γ̂M(θ0).

Proposition G. Under Assumption G,

√
M |g̃l(z, θ0, γ̂M(θ0)− g̃l(z, θ0, γ0)| p→ 0,

√
M

∣∣∣∣∂g̃l(z, θ0, γ̂M(θ0))

∂θk
− ∂g̃l(z, θ0, γ0)

∂θk

∣∣∣∣ p→ 0,

for all z ∈ Z, k = 1, . . . , q, and l = 1, . . . , d.

This proposition implies that the limiting distribution of ζM(θ0) in Assumption K (ii) is

determined by GM g̃(·, θ0, γ0) and vec(GMG̃(·, θ0, γ0)) and Assumption K (ii) is easily satisfied.

Proof of Proposition G

Pick any B > 0, z ∈ Z, and l = 1, . . . , d. By Assumption G (iii) and Lemma G below, we

have

Pr{
√
M |g̃l(z, θ0, γ̂M(θ0))− g̃l(z; θ0, γ0)| ≥ B}

≤ Pr{|γ̂M(θ0)| ≤ B1M
1
2b}+ o(1)

≤ C√
M

RM
d

(
α +Bβ

1M
β
2b

)
B1M

1
2b

rM

[
RM
d
−
(
α +Bβ

1M
β
2b

)
B1M

1
2b

] + o(1),

for some C > 0, where B1 = (a/B)1/b. Since the last expression converges to zero due to

the conditions of rM and RM , we obtain the first statement of this proposition. The second

statement follows by similar arguments.

It remains to show the following lemma.
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Lemma G. Under Assumption G (i)-(ii), there exists a positive constant C such that

Pr{|γ̂M(θ0)| ≤ c} 6 C√
M

RM
d

(α + cβ)c

rM
[
RM
d
− (α + cβ)c

] ,
for all c ∈ (rM , RM), rM > 0, and RM > rM satisfying RM/d > (α+cβ)c, where C is universal

across rM , RM , and r.

Proof of Lemma G

Let ǧM(θ, γ) =
√

rM
|γ| ḡ(θ, γ). Pick any θ0 ∈ Θ0 and c ∈ (rM , RM). Observe that

Pr{|γ̂M(θ0)| ≤ c} ≤ Pr

{
inf

γ:rM≤|γ|≤c
|ǧM(θ0, γ)|2 6 |ǧM(θ0, γc)|2

}
≤ Pr

{
inf

γ:rM≤|γ|≤c
|E[ǧM(θ0, γ)]|2 − |E[ǧM(θ0, γc)]|2 ≤ 2

d∑
l=1

sup
γ:rM≤|γ|

|ǧM,l(θ0, γ)2 − (E[ǧM,l(θ0, γ)])2|

}

≤ Pr

{
inf

γ:rM≤|γ|≤c
|E[ǧM(θ0, γ)]|2 − |E[ǧM(θ0, γc)]|2 ≤ 4

d∑
l=1

sup
γ:rM≤|γ|

|ǧM,l(θ0, γ)− E[ǧM,l(θ0, γ)]|

}

≤ 4√
M

∑d
l=1 E

[
supγ:rM≤|γ|

√
M |ǧM,l(θ0, γ)− E[ǧM,l(θ0, γ)]|

]
infγ:rM≤|γ|≤c |E[ǧM(θ0, γ)]|2 − |E[ǧM(θ0, γc)]|2

,

for any γc satisfying c ≤ |γc| ≤ RM , where the first inequality follows from the definition of

γ̂M(θ0), the second inequality follows from the triangle inequality, the third inequality follows

from |X2 − Y 2| 6 max 2{|X|, |Y |} · |X − Y |, and the last inequality follows from the Markov

inequality. Since it holds for any γc satisfying c ≤ |γc| ≤ RM , we can take γc with |γc| = RM

to satisfy

|E[ǧM(θ0, γc)]|2 ≤ d
rM
RM

.

By Assumption G (ii), we also have

inf
γ:rM≤|γ|≤c

|E[ǧM(θ0, γ)]|2 ≥ rM
(α + cβ)c

.

Furthermore, note that the class Gl =

{√
rM
|γ| g̃l(, ·θ, γ) : |γ| ≥ rM

}
of functions has the uniform

covering number bounded by (1/ε)dz and the envelop function of Gl has a bounded L2(P )

norm because g̃l(, ·θ, γ) is bounded. Therefore, by van der Vaart and Wellner (1996, Theorem

2.14.1), there exists a positive constant C0 such that

E

[
sup

γ:rM≤|γ|

√
rM
|γ|
√
M |ḡl(θ0, γ)− E[ḡl(θ0, γ)]|

]
≤ C0,

where C0 is universal across rM and RM . Combining these results, we obtain the conclusion.
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